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Abstract— To realize compliant behavior of link-
side dynamics of elastic actuators, inner-loop torque
control has to generate and deliver PD action to
the link-side inertia. However, under this cascade
configuration, stability of the overall system is ques-
tionable. To solve this problem, this paper presents
a guideline for gain selection that ensures stability of
the overall cascaded system by passivity. Moreover,
passivity has another advantage that it allows us to
include the passive environmental interaction into the
formulation. The importance of the passivity-based
design is addressed by motivating example, and the
viability of the proposed approach is verified through
the experiments.

I. Introduction

Soft robotics is one of the major trends in robotics.
While some soft behavior can be realized through torque
sensing and control, intrinsic compliance enables even
more robust behavior. Series-elastic actuators (SEAs)
are becoming more and more popular in many robotic
applications because they combine torque sensing and
mechanical robustness [1]–[5]. Joint torque control of
SEA is one of the important research areas as it allows to
generate arbitrary link-side behavior (Fig. 1). Common
applications like PD control can be implemented in a
cascade with a torque control loop, shaping the intrinsic
behavior, if necessary [6], [7].

A number of approaches to implement SEA torque
control were previously presented [8]–[12]. In all ap-
plications, the generation of link-side damping requires
acceleration feedback which has a significant impact on
stability. In practical applications this limitation may be
huge especially when the system is exposed to collisions
with the environment, e.g. in bipedal walking [13]. Our
previous work [14] shows that this limitation can be
overcome by adding physical damping in parallel to the
elastic element. Conceptually speaking, this new intrinsic
viscous damping lowers the relative degree of the joint
torque to the system input to one, and therefore a
simple PI control is acceptable for physically damped
SEA (pdSEA) systems. As this does not any more require
acceleration feedback, the controlled system is robust
against impacts on the link side.

Additional advantages of adding physical damping has
been studied in [15] (see also [16]–[20]). For example,
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Fig. 1. Overview of the control scheme. Inner-loop joint tracking
torque control is cascaded by the outer-loop PD controller.

physical damping may improve the energy efficiency,
especially at high frequencies, and control bandwidth. To
allow intrinsic motions as well as highly damped appli-
cations, variable damping designs have been proposed in
literature [17], [20], [21]. Development of this concept and
the associated hardware are motivated by the perceived
imbalance of actuator weight and link-side performance
that can be generated on our SEA-based robot C-Runner
[13]. As periodic motions are common in locomotion, the
use of intrinsic dynamics is desirable. We expect this
development to contribute to increasing the maximum
capabilities of the robot in terms of locomotions speed
as well as control efficiency. To allow intrinsic motions
as well as highly damped applications, variable damping
designs have been proposed in literature [17], [20], [21].
A SEA augmented by variable physical damping is called
variable physical damping actuator (VPDA) [21].

In the control point of view, VPDA and pdSEA
(i.e. fixed damping) are the same under the reason-
able assumption that the variability of damping can
be neglected in the inner-loop controller because the
inner-loop controller has smaller time constants than
the damping variation which is determined by the ap-
plication. Namely, the control concept proposed in our
previous work [14] can be directly applied. However
the stability properties of the cascaded structure of PD
control and torque control were not completely addressed
in [14].

Therefore, in this paper, we propose a passivity-based
joint torque controller for VPDAs with robust stability.
Because VPDA can clearly be advantageous for appli-
cations in soft robotics, e.g. human-robot interaction,
passive behavior is essential to establish the safety of
the control concept. This paper provides a sufficient
condition for control gains to satisfy passivity. A moti-
vating example underline that VPDA-based systems can
have unstable behavior when passivity conditions are not
met, whereas the system is stable under the proposed
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Fig. 2. Top: magnitude bode plot for (1). Bottom: the plot for
(2). Physically damped SEA is a combination of SEA and rigid
joint robots, but more likely to behave like rigid joint robot, as Dj
grows. This is obvious from physical sense because higher damping
makes the joint coupling stronger.

control design. Additionally we verify the viability of
the approach in the experiment, including environment
collision and interaction.

This paper is organized as follows. In Section II, the
benefits of physical damping are reviewed, and problem
addressed in this paper is described using a motivating
example. Section III describes the gain tuning guideline
to ensure the passivity. In Section IV, the proposed
scheme is verified through experiments. Section V con-
cludes the paper.

II. Motivation

A. Adding joint damping in addition to the elasticity

Although SEA systems have advantages such as ro-
bustness against impact and low output impedance, it
also has disadvantages especially for the joint torque
control capabilities, as pointed out in [14]. Physically
speaking, this is because the elastic element decouples
motor-side and the link-side inertias. The motor inertia
has to be accelerated quickly enough to deliver torque
generated by the motor to the link inertia. In contrast,
damper strengthens the coupling between motor and link
inertia, so it helps delivering the torque generated by the
motor to link inertia, similar to rigid joint robot case.

The characteristics of pdSEA lies somewhere in the
middle of rigid joint and SEA. This is mathematically
clear if we investigate the transfer functions. For exam-
ple, the open-loop transfer function of external torque
to the motor acceleration (which can be interpreted as
robustness against impact) is

θ̈(s) =
Djs+Kj

BMs2 +Dj(M +B)s+Kj(M +B)
τext(s) (1)

Fig. 3. Schematic diagram of VPDA. M : Link-side inertia, B:
Motor-side inertia, τm: motor torque, τj : joint torque, τg : gravity
torque, τext: external torque acting on the link inertia, Kj : joint
stiffness, Dj : joint damping, θ: motor position, and q: link position.

and that of output impedance is

τext =
BMs3 +Dj(M +B)s2 +Kj(M +B)s

Bs2 +Djs+Kj
q̇(s), (2)

where the parameters are introduced in Fig. 3. Note
that (1) and (2) become rigid joint as Dj → ∞, and
become SEA if Dj = 0. Magnitude plots with various
parameters are shown in Fig. 2, and it is clear that the
pdSEA is somewhere in the middle of rigid joint and SEA
depending on Dj . Please refer to [15] for more detailed
discussions on the characteristics of pdSEAs.

Note that the implementation of variable damping is
relatively easy and weight efficient compared to variable
stiffness design. Moreover the damping can be adjusted
nearly instantaneously as no energy input is required
because it has no (little) dynamics, whereas the online
tuning of stiffness is not easy because of the its own
dynamics. In other words, it is possible to change the
system characteristics from near-SEA to near-rigid joint
while the system is running.

B. Joint torque control of variable physically damped SEA

A schematic diagram of VPDA is shown in Fig. 3. The
equation of motion is given by

M(q)q̈ + C(q, q̇)q̇ = τj − τg(q) (3)

Bθ̈ + τj = τm (4)

with

τj = Kj(θ − q) +Dj(θ̇ − q̇). (5)

By taking a time derivative, we have

τ̇j = Kj(θ̇ − q̇) +Dj(B
−1(τm − τj)− q̈). (6)

Note that, to be precise, Ḋj should be taken into account,
but it can be assumed to be zero because the inner loop
runs in high frequency (3 kHz in our setup), and Dj

varies slowly in view of inner loop controller.1 Under
this assumption, VPDA and pdSEA are the same in the
control point of view. For this reason, only VPDA will
be considered hereinafter because it includes pdSEA.

Although (6) forms a torque dynamics having input
τm in the equation, compensation of Kj(θ̇− q̇) is needed
if we design a controller using (6). In order to avoid

1Or, Ḋj(θ̇ − q̇) can be simply eliminated by feedback.



unnecessary feedback cancellations, we take one more
derivative:

τ̈j =Kj(B
−1(τm − τj)− q̈) +Dj(B

−1(τ̇m − τ̇j)−
...
q ).

(7)

Using

τm = Bu+ τj +Bq̈, (8)

(7) reduces to

τ̈j = Kju+Dj u̇. (9)

Here, in terms of stability, D-control is unavoidable for
SEA systems, but D-control is not required for VPDA
systems because Dj u̇ generates D-action from P-control
[14].

Now, let us consider a PI joint torque tracking control
given by

u = Lpeτ + Li

∫
eτ , (10)

where eτ = τd − τj is the torque error. Substituting this
into (9), we obtain

τj(s) =
DjLps

2 + (KjLp +DjLi)s+KjLi
s3 +DjLps2 + (KjLp +DjLi)s+KjLi

τd(s)

(11)

meaning that the resulting τj is the low-pass filtered
signal of τd.

Stability of the overall cascaded system, however, is
unclear. To solve stability issues, we propose a passivity-
based approach in this paper. In fact, passivity property
has great advantage in VPDA applications because it
allows us to include passive environmental interaction in
the analysis.

Remark 1 (Torque controller in [14]): The proposed
controller in [14] was designed using (6), so it had
compensation of Kj(θ̇− q̇) in τm. Other than this, it had
τ̇d feed-forward to make the closed-loop torque error
dynamics exponentially stable. The stability of overall
system could be made on top of exponential tracking
of desired torque. However, in practice, if exponential
tracking fails (for example, due to the environmental
interaction), then the stability becomes questionable.
Moreover, τ̇d implies acceleration feedback which is
amplified by D-control gain of outer-loop controller. To
avoid this, this paper does not consider τ̇d feed-forward
in the control law.

Remark 2 (Feedforward of Bq̈): It should be to men-
tioned that, although q̈ should be calculated numerically,
feed-forward term Bq̈ in τm may not be harmful in prac-
tice because it is not amplified by any control gains. An
alternative is to use q̈ = M−1(−Cq̇+ τj − τg + τext) from
(3). Because τext is not known, we can simply treat it as
a disturbance. The important remark is that, whatever
method we choose, the compensation of q̈ is important to
achieve high performance joint torque tracking, because
of so-called natural velocity feedback effect [8], [22], [23].

TABLE I

Two sets of gains used in the motivating example

Description Symbol Value

Gain Set 1
σ 10
Lp σ = 10
Li σ2 = 100

Gain Set 2
σ 1001/3

Lp σ2 = 21.5443
Li σ3 = 100

Fig. 4. Motivating example. PD control is applied to the mass m
which is connected with the environment by spring.

C. Motivating example

To impact the necessity of passivity-based design, we
present a motivating example.

Consider a single degree of freedom case with M = 1
kg, C = 0, τg = 0, B = 1.62 kg, Kj = 400 N/m, Dj = 10
Ns/m in (3)-(5). The following outer-loop PD control is
applied to the link side mass.

τd = Kp(qd − q)−Kdq̇︸ ︷︷ ︸
=τpd

+ 0︸︷︷︸
=τg

, (12)

where the new notation τpd and τg are introduced for
consistency with the later part of the paper. The pa-
rameters are Kp = 1000 N/m, Kd = 20 Ns/m, and the
desired trajectory is qd = 0.5 m (set-point). In addition,
the link-side is coupled with environment by a spring (i.e.
passive) of which stiffness is 1000 N/m, as described in
Fig. 4. Hence, the mass should converge to q = 0.25 m.

To realize this outer-loop control, inner-loop torque
control (8) with (10) is applied for two sets of gains
listed in Table I. Note that these two gain sets are
the same except for the P-gains. Both gains showed
similar torque tracking results for a sinusoidal test signal
τd = 10 sin(4πt). Nevertheless, when the PD control and
environmental interaction are taken into account, the
resulting behaviors were very different. The controlled
system was unstable for the gain set 1 (Fig. 5b), whereas
it was stable for the gain set 2 (Fig. 5c).

In conclusion, this motivating example shows that
the overall system’s stability could be affected by small
variation of control gains. In the following section, we
propose a gain selection rule to stabilize the controlled
system based on the passivity theory.
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Fig. 5. Simulation result for the motivating example. Both sets
of gains tracks sinusoidal test input reasonably. However, when the
PD control and environmental interaction is considered as shown
in Fig. 4, the gain set 1 did not stabilize the system, whereas the
gain set 2 stabilized it.

III. Passivity-Based Control Design

Let us consider a general form of outer-loop PD con-
troller

τd = Kp(qd − q) +Kd(q̇d − q̇)︸ ︷︷ ︸
=τpd

+τg. (13)

To realize this outer-loop controller, define an inner-loop
torque tracking control law by

τm = Bu+Bug + τj +Bq̈ (14)

with2

ug =
s2

Djs+Kj
τg (15)

and

u = Lpeτ + Li

∫
eτ (16)

2In practice, ug usually has small value because it can be rewrit-

ten as 1
Kj

(
Kj/Dj

s+Kj/Dj
τ̈g

)
. Namely, g̈(q) is divided by Kj (which has

at least 102 order usually) after low-pass filtering.

which is identical to (10), but rewritten for the readers’
convinience. Fig. 6 summarizes the overall scheme with

Cq(s) =
Kds+Kp

s
, Cτ (s) =

Lps+ Li
s

,

Pτ (s) =
Djs+Kj

s2
.

(17)

The transfer function from q̇d − q̇ to τj − τg is3

τj − τg
q̇d − q̇

=

(Kds+Kp)
(
DjLps

2 + (KjLp +DjLi)s+KjLi
)

s (s3 +DjLps2 + (KjLp +DjLi)s+KjLi)
(19)

For simplicity, define the control gains by Lp = σnp and
Li = σni , where σ is a new control gain and np, ni > 0
are some constants. The following Theorem tells us about
the positive realness of (19).

Theorem 1 (Positive realness of (19)): Assume that
the orders of Lp, Li > 0 satisfy

2np > ni. (20)

Then, (19) is a positive real transfer function for suffi-
ciently large σ.

Proof: To show (19) is positive real, we have to show
that (i) (19) is stable, and (ii) the real part of (19) with
s = jw is positive for all w.

For (i), stability is trivial from Routh Hurwitz criterion
under the constraint (20).

For (ii), the real part can be obtained as

R
(
τj − τg
q̇d − q̇

(jw)

)
=

1

den

(
a6w

6 + a4w
4 + a2w

2
)
, (21)

with

a6 =D2
jKdL

2
1 − (DjKp +KjKd)L1 −DjKdL2, (22)

a4 =D2
jKdL

2
2 +K2

jKdL
2
1 +KjKpL2, (23)

a2 =K2
jKdL

2
2. (24)

To a6 be positive, the highest order should be 2np, and
this should be larger than np (which is trivial) and ni.
Hence the constraint (20) follows. a4 and a2 are always
positive.

The following Corollaries are consequence of this The-
orem.

Corollary 1 (Asymptotic stability): Assume that q̇d =
0 and τext = 0. If Theorem 1 holds, then the controlled
system is asymptotic stable to τj = τg(qd) and q = qd.

Proof: To find an equilibrium point, by plugging
(14)-(16) into (7), we have

ëτ +DjLpėτ + (KjLp +DjLi)eτ +KjLi

∫
eτ = −τ̈pd.

(25)

3For readers’ information, the closed-loop torque dynamics is

τj =
DjLps

2 + (KjLp +DjLi)s+KjLi

s3 +DjLps2 + (KjLp +DjLi)s+KjLi
τpd + τg . (18)



Fig. 6. Overall control structure. If the upper part (red dotted) is passive from q̇d − q̇ to τj − τg , then the overall control structure can
be constructed by feedback interconnections of passive subsystems. Cq , Cτ , Pτ are defined by (17).

In steady state, ėτ = 0, eτ = 0,
∫
eτ = 0 (note that the

integration converges to disturbance, if any) with τd =
Kp(qd − q) + τg(q), and τg(q) = τj . Combining all these,
the unique equilibrium point is τj ≡ τg(qd), q ≡ qd.

Because the transfer function from −q̇ to τj − τg is
positive real, positive real lemma [24] says that there
exists a positive definite storage function S(x) which
satisfies Ṡ(x) ≤ −q̇T (τj − τg), where x is a state for
the transfer function. Define the Lyapunov function by
V (q, q̇, x) = S(x) + 1

2 q̇
TM(q)q̇. Because V̇ ≤ 0, the

asymptotic stability can be concluded by the invariance
principle.

Corollary 2 (Passivity): If Theorem 1 holds, then the
overall control structure in Fig. 6 can be constructed by
feedback interconnections of passive subsystems. Hence,
as long as q̇d is L2 signal, the controlled system is
asymptotically stable.

Proof: Positive real of (19) implies passivity of the
input-output pair (q̇d − q̇, τj − τg). The rest is trivial.

Finally, we remark the followings.
Remark 3 (Gain tuning guideline): Theorem 1 pro-

vides a guideline for selecting PI gains that, when tuning
the PI gains, I gain should not be increased faster than
square of P gain. In other words, when the user increases
P gain by double, I gain should not increase more than
factor 4. In this paper, as an example, we use the
following gain tuning rule:

Lp = σ2 and Li = σ3. (26)
Remark 4 (Practical constraints on Kp, Kd, and Dj):

Although Theorem 1 is true for sufficiently large σ, in
practice, achievable σ is limited. By plugging (26) into
(23), we obtain

a6 = DjKd

(
Djσ

2 − σ − (
Kp

Kd
+
Kj

Dj
)

)
σ2. (27)

From this, we have the following observations:

Fig. 7. Experimental setup. The left and right discs (i.e. motor-
and link- side inertias, respectively) are connected by a steel cable.
A joint module from DLR LWR with 1:100 gear ratio is used. In
the transmission, the upper element is explained in Fig. 8, and the
lower one is a steel spring. An end-stop is located at q ' 0.

• Achievable Dj should be lower bounded properly. In
our setup, it is lower bounded by 4 Nm · s/rad.

•
Kp

Kd
should be upper-bounded properly. Namely, too

small Kd is not allowed.

Otherwise, too larger σ may be required.
Remark 5 (Revisiting the motivating example): Note

that the gain set 1 in Table I does not meet the
constraint (20), meaning that the resulting controller
may not be passive. Due to the lack of passivity, the
controlled system was unstable. On the other hand, the
gain set 2 meets the constraint (20), and therefore the
controlled system was stable.

IV. Experiments

Fig. 7 shows the experimental setup. Motor-side
inertia and link-side inertia are coupled by spring-
damper element. To realize variable damping, a pull type
spring/damper was designed, of which cross section is
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Fig. 8. Cross section of the VPDA with an elastic element formed
by the active air chamber (1) and the linearizing air chamber (2),
connected by the hydraulic system (3)(6) with the variable throttle
valve (4) providing viscoelastic behavior on the piston rod (5) A
mini servo (7) sets the damping throttle.

shown in Fig. 8 . Elastic spring behavior is implemented
by a two chamber air spring generating almost linear
spring characteristics. The damping part is taken over by
a hydraulic piston-throttle combination, regulating the
oil flow between the two oil chambers. With this design
the damping can be adjusted fast and with low forces.
A tiny servo drive works fine in this system, tuning the
damping from fully closed to fully open takes less than
0.05 s.

In the experiments, The PD control is applied with
Kp = 100 Nm/rad and Kd = 20 Nm · s/rad with qd =
−0.075 sin(2πt) rad. The amplitude 0.075 was selected to
avoid motor saturation. During the motion, the damping
value is changes by Dj = 30 + 25 sin(πt) Nm · s/rad as
shown in Fig. 9a.

In the first experiments (Fig. 9b), similar to the mo-
tivating example, the link was clamped at q ' 0 (note
that clamping can be considered as a spring connection
to q ' 0 which has very high stiffness). Although q could
not move because of the clamping, the controlled system
was stable.

In the second experiment (Fig. 9c), to make the system
more dynamic, link clamping was eliminated. However,
there was still an environmental interaction (collision) at
the end-stop (namely, q cannot move further than q ' 0).
It is interesting to observe that, the exact torque tracking
could not be obtained mainly due to the environmental
collision. As a consequence of imprecise torque tracking,
the correct amount of torque (defined by outer-loop pd
plus gravity compensation) could not be delivered to
the link-side inertia. Despite this error propagation, the
overall system remained stable because the gains were
tuned to satisfy passivity.

In the third experiment (Fig. 10), strong impact at
the end-stop was intentionally made to see the effective-
ness of VPDA. To make periodic impacts using the PD
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(c) The link was not clamped

Fig. 9. Experimental results with outer-loop PD control. (a)
During the experiment, Dj was changed by Dj = 30 + 25 sin(πt).
(b) The link-side was clamped at q ' 0. Note that the clamping
can be though of as an environmental interaction. (c) The link was
not clamped, but still could not move further than q ' 0 because
of the end-stop (Fig. 7). The link inertia collided at the end-stop.

control, qd was set as a pulse signal with peak values of
−0.3 rad and 0.3 rad. Please note that q did not track
qd because the motor hits saturation, and the purposed
of this experiment was not to track qd, but to make
an periodic impact at the end-stop. Initially, Dj was 50
Nm · s/rad, and it was changed to 5 Nm · s/rad at t = 4s.
When the Dj was set 50, the measured impact torque was
65.23 Nm, and it was reduced to 45.2 Nm when Dj = 5
Nm · s/rad. This is physically clear that higher Dj makes
the system behave more like a rigid joint, and lower Dj

makes the system behave more like a SEA. From this
experiment, we confirmed that the VPDA can change
system characteristics by utilizing variable damping.

V. Conclusion and Future Works

To apply PD control to the link-side of physically
damped series elastic actuators (pdSEAs) or variable
physical damping actuators (VPDAs), cascading of
inner-loop PI torque tracking control (followed by feed-
forward input) is a straightforward solution. However,
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Fig. 10. Experimental result for impact test. To make periodic
impact, qd was defined as a periodic pulse signal. Dj was 50, and
was changed to 5 at t = 4s. The measured impact torque was
reduced when Dj was lowered because it weakens the coupling.
Namely, the system behaved more like a SEA system.

under this cascade configuration, stability of the overall
system is questionable. Furthermore, stability analysis
becomes more difficult when the environmental interac-
tion, which is motivation for pdSEA- and VPDA- based
systems, is taken into account.

Passivity can be a key ingredient for stability of the
overall system, because it allows us to include passive
environmental interaction in the analysis by little exten-
sion. This paper claims that, when tuning the inner-loop
PI controller, the I gain should not increase faster than
the square of P gain to ensure the passivity. The motivat-
ing example shows that the controlled system may not
be stabilized when this condition is not met, whereas the
controlled system is stable under the sufficient condition.
Experiment shows the viability of the proposed approach
on real hardware.

We plan to apply this concept to our SEA robot C-
Runner [13]. As stated earlier, we expect an increase of
the capabilities in terms of locomotion speed and control
efficiency.
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